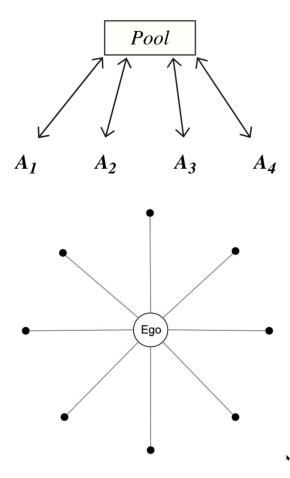
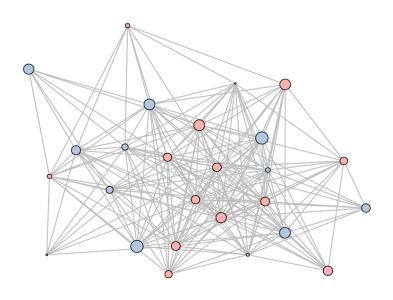

#### 2021 ASU-HYU Joint Conference

## Structural Inertia to Social Media Silence: A Multilevel Analysis of the Network Topology Effects on Participation

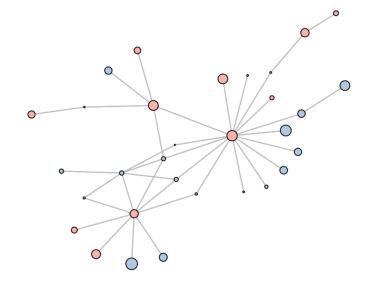
#### Dongyoung Sohn Yong Suk Choi


Center for Computational Social Sciences (C<sup>2</sup>S<sup>2</sup>) Hanyang University, Seoul, Korea



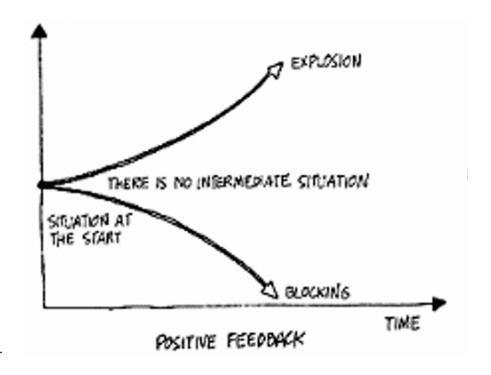

# Silent Majority in Social Media

- Degrees of communication through posting messages exhibit significant disparities across individuals
  - The top 1% of social media users produce more than 70% of the posts (Heil & Piskorski, 2005; van Mierlo, 2014)
  - Less than 1% of Wikipedia users perform more than half of all edits (Swartz, 2006)
  - More than 80% of social media users think themselves as being idle rather than active in communication (Williams et al., 2012)
- The silent majority called *lurkers* has attracted much scholarly attention (Na, Rau, & Ma, 2014)
- \* The ubiquity of lurking behaviors leads to a question what makes such disparities in individuals' voluntary participation in communication so prevalent?


- Voluntary cooperation among social media users is often subject to an incentive structure that gives rise to communication dilemma a state in which "it is in the collective interest of network members to communicate, but in each separate interests to hoard information" (Bonacich, 1990, p. 448)
- Individual motivation to post messages may vary depending on their positions in networks



Communication in network structures








b) Sub-Network with Lower Level of Communication

- Initial small differences can be compounded through network structures (DiMaggio & Garip, 2012), widening the gap between those active and inactive in communication
- This path-dependent process (aka. Matthew effect) can be observed in any situation where individual behaviors are conjoined by those of others
- A highly skewed distribution of voluntary posting of messages we see might have been emerging through such a structural path-dependent process



- Do the cumulative count of messages posted vary depending on the individual positions in networks (e.g., direct/indirect centrality)?
- \* Do the cumulative count of messages posted vary depending on *the structural* characteristics of networks they are part of?
- \* Are there significant <u>cross-level interactions</u> between the effects of individual- and network-level structural properties on the cumulative message counts?

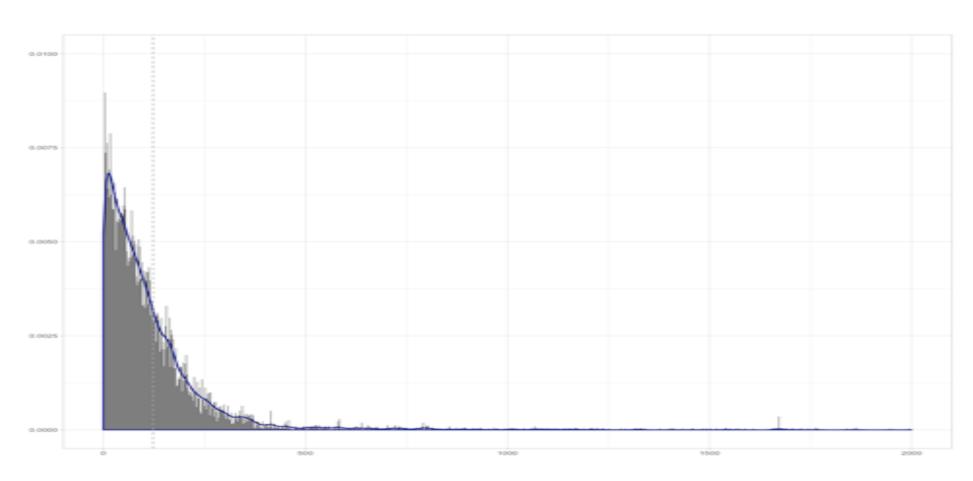
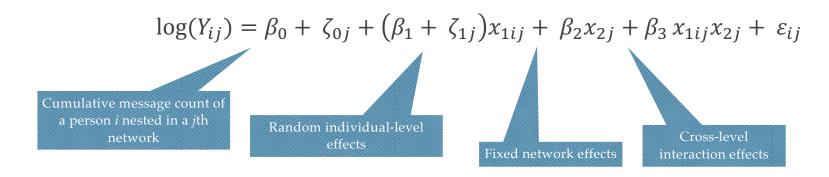

- \* The behavioral data of <u>15,633 Facebook users nested in 73 local networks were</u> collected and analyzed
- \* The main dependent variable was the individuals' cumulative amount of messages posted; individuals' gender and age of account were also included
- Actor-level positional characteristics as well as network-level structural characteristics were calculated and incorporated together

Table 1. Descriptive Statistics of Individual and Network-Level Characteristics

|                           | N      | Mean  | SD     | Max   | Min   |
|---------------------------|--------|-------|--------|-------|-------|
| Individual-Level          |        |       |        |       |       |
| Cum. Message              | 15,633 | 123.9 | 236.13 | 8,500 | 0     |
| Degree                    | 15,633 | 41.22 | 44.91  | 414   | 0     |
| PageRank Centrality (PRC) | 15,633 | .0047 | .0047  | .0662 | .0003 |
| Network-Level             |        |       |        |       |       |
| Gender-BDI <sup>a</sup>   | 73     | .46   | .061   | .50   | .096  |
| Size                      | 73     | 291   | 126.77 | 510   | 29    |
| Degree (Group Mean)       | 73     | 41.22 | 12.43  | 77.14 | 6.04  |
| PRC (Group Mean)          | 73     | .0047 | .0036  | .0345 | .0020 |
| Transitivity (%)          | 73     | 52.66 | 14.07  | 87.34 | 27.78 |
| Component Ratio (%)       | 73     | 6.76  | 3.77   | 27.69 | .68   |
| Density (%)               | 73     | 9.1   | 6.45   | 55.62 | 3.18  |
| Diameter                  | 73     | 8.04  | 2.30   | 14    | 2     |

Note: Shown above are the descriptive statistics of the key variables prior to normalization.

a. The maximum value of Gender-BDI is 0.5, indicating that the gender distribution is maximally heterogeneous.

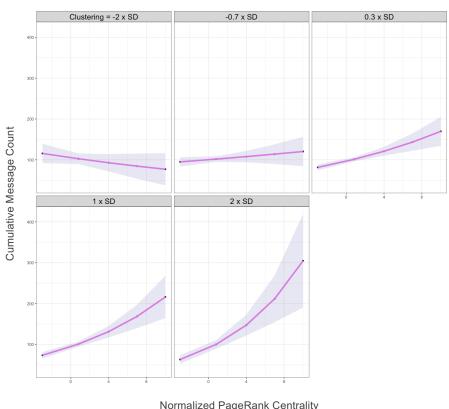



- Cumulative message counts of FB users follow a highly skewed distribution confirming the presence of serious disparity in participation
- \* To consider the overdispersion, a *negative binomial* (NB) distribution was used; NB allows an extra variation of variance with  $\theta$  parameter:

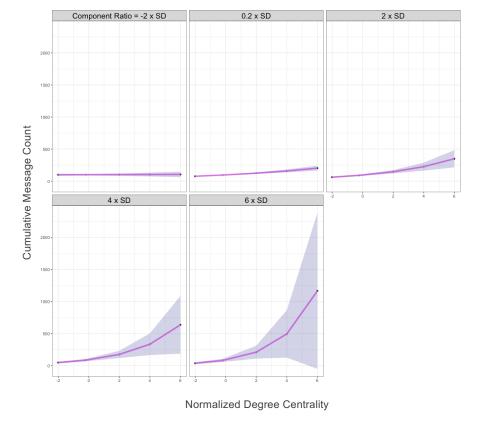
$$NB_{var} = \lambda + \lambda^2 / \theta$$

\* We set  $\theta = 0.85$  to closely approximate the actual distribution shown on the right

The generalized multilevel linear models constructed shared the following basic form:




- \* Likelihood ratio tests confirmed a statistically significant difference existing between models with and without a random intercept,  $\chi^2(2) = 1715.29$ , p < .001
- \* The intra class correlation (ICC) was 0.1451, meaning that the between-network variance accounted for 14.51% of the total variance in the data, which justified the need for a multilevel analysis


#### Multilevel statistical analyses results

|                                  | Model I       | Model II      | Model III     | Model IV      | Model V       |
|----------------------------------|---------------|---------------|---------------|---------------|---------------|
| Individual-Level Predictors      |               |               |               |               |               |
| Use Length                       | 1.41 (.03)*** | 1.46 (.10)*** | 1.41 (.10)*** | 1.42 (.10)*** | 1.42 (.10)*** |
| Gender (male)                    | 18 (.02)***   | 20 (.03)***   | 20 (.03)***   | 20 (.03)***   | 20 (.03)***   |
| Degree                           | .12 (.01)***  | .08 (.03)**   | .21 (.05)***  | .21 (.05)***  | .22 (.05)***  |
| PageRank Centrality (PRC)        | 01 (.01)      | .04 (.02)     | .14 (.04)***  | .14 (.04)***  | .12 (.04)***  |
| Individual-Level Interactions    |               |               |               |               |               |
| Gender x Degree                  |               |               | 06 (.02)**    | 06 (.02)**    | 06 (.02)**    |
| Use Length x Degree              |               |               | 17 (.06)**    | 15 (.06)**    | 16 (.06)**    |
| Use Length x PRC                 |               |               | 15 (.06)**    | 16 (.06)**    | 14 (.06)*     |
| Network-Level Predictors         |               |               |               |               |               |
| Gender-HHI                       |               |               |               | 24 (.53)      | 14 (.50)      |
| Degree (Group Mean)              |               |               |               | .13 (.04)**   | .14 (.05)**   |
| PRC (Group Mean)                 |               |               |               | 08 (.03)*     | 22 (.06)***   |
| Clustering                       |               |               |               | 05 (.05)      | 04 (.05)      |
| Component Ratio                  |               |               |               | .02 (.04)     | 01 (.05)      |
| Cross-Level Interaction          |               |               |               |               |               |
| Degree x Clustering              |               |               |               |               | 04 (.03)      |
| Degree (Group) x Clustering      |               |               |               |               | 03 (.05)      |
| PRC x Clustering                 |               |               |               |               | .04 (.02)*    |
| PRC (Group) x Clustering         |               |               |               |               | .09 (.03)**   |
| Degree x Component Ratio         |               |               |               |               | .05 (.03)*    |
| Degree (Group) x Component Ratio |               |               |               |               | 01 (.03)      |
| PRC x Component Ratio            |               |               |               |               | 03 (.02)      |
| PRC (Group) x Component Ratio    |               |               |               |               | .03 (.02)     |

#### Multilevel statistical analyses results







b) Actor Degree Centrality x Network Component Ratio

a) Actor PageRank Centrality x Network Clustering

- \* The findings confirm that individual cumulative participation in communication may be closely related with the kinds of networks they are part of and their positions therein network structure matters.
- This suggests that a mechanism in which individuals are locked in such a pathdependent process may also be at work, leading a great majority of social media users to silence.
- Social media users might be reluctant to post messages partly because the surrounding social fabrics and dynamics have not encouraged them to do so.
- \* Further studies are necessary for illuminating the cumulative effects of networks on social outcomes.